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19. Abstract data types
Learning objectives:

• data abstraction

• abstract data types as a tool to describe the functional behavior of data structures

• examples of abstract data types: stack, fifo queue, priority queue, dictionary, string

Concepts: What and why?

A data structure organizes the data to be processed in such a way that the relations among the data elements are 

reflected and the operations to be performed on the data are supported. How these goals can be achieved efficiently 

is the central issue in data structures and a major concern of this book. In this chapter, however, we ask not how 

but what? In particular, we ask: what is the exact functional behavior a data structure must exhibit to be called a  

stack, a queue, or a dictionary or table?

There are several reasons for seeking a formal functional specification for common data structures. The primary  

motivation  is  increased  generality  through  abstraction;  specifically,  to  separate  input/output  behavior  from 

implementation, so that the implementation can be changed without affecting any program that uses a particular 

data type. This goal led to the earlier introduction of the concept of type in programming languages: the type real is 

implemented differently on different machines, but usually a program using reals does not require modification 

when run on another machine. A secondary motivation is  the ability to prove general theorems about all  data 

structures that exhibit certain properties, thus avoiding the need to verify the theorem in each instance. This goal is  

akin to the one that sparked the development of algebra: from the axioms that define a field, we prove theorems 

that hold equally true for real or complex numbers as well as quaternions.

The primary motivation can be further explained by calling on an analogy between data and programs. All  

programming languages support the concept of procedural abstraction: operations or algorithms are isolated in 

procedures, thus making it easy to replace or change them without affecting other parts of the program. Other  

program parts do not know how a certain operation is realized; they know only how to call the corresponding 

procedure and what effect the procedure call will have. Modern programming languages increasingly support the  

analogous concept of data abstraction or data encapsulation: the organization of data is encapsulated (e.g. in a 

module  or  a  package)  so that  it  is  possible  to change  the data  structure without  having to change  the whole 

program.

The secondary motivation for formal specification of data types remains an unrealized goal: although abstract  

data types are an active topic for theoretical research, it is difficult today to make the case that any theorem of use  

to programmers has been proved.

An abstract data type consists of a domain from which the data elements are drawn, and a set of operations.  

The specification of an abstract data type must identify the domain and define each of the operations. Identifying  

and describing the domain is generally straightforward. The definition of each operation consists of a syntactic and 

a semantic part. The syntactic part, which corresponds to a procedure heading, specifies the operation's name and 
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the type of each operand. We present the syntax of operations in mathematical function notation, specifying its  

domain and range. The semantic part attaches a meaning to each operation: what values it produces or what effect  

it has on its environment. We specify the semantics of abstract data types algebraically by axioms from which other  

properties may be deduced. This formal approach has the advantage that the operations are defined rigorously for 

any domain with the required properties. A formal description, however, does not always appeal to intuition, and 

often forces us to specify details that we might prefer to ignore. When every detail matters, on the other hand, a  

formal  specification  is  superior  to  a  precise  specification  in  natural  language;  the  latter  tends  to  become 

cumbersome and difficult to understand, as it often takes many words to avoid ambiguity.

In this chapter we consider the abstract data types: stack, first-in-first-out queue, priority queue, and dictionary.  

For each of these data types, there is an ideal, unbounded version, and several versions that reflect the realities of 

finite machines. From a theoretical point of view we only need the ideal data types, but from a practical point of  

view,  that  doesn't  tell  the  whole  story:  in  order  to  capture  the  different  properties  a  programmer  intuitively  

associates with the vague concept "stack", for example, we are forced into specifying different types of stacks. In  

addition to the ideal  unbounded stack,  we specify a  fixed-length stack which mirrors the behavior of an array 

implementation,  and  a  variable-length  stack which  mirrors  the  behavior  of  a  list  implementation.  Similar 

distinctions apply to the other data types, but we only specify their unbounded versions.

Let X denote the domain from which the data elements are drawn. Stacks and fifo queues make no assumptions 

about X; priority queues and dictionaries require that a total order ≤ be defined on X. Let X
∗
denote the set of all 

finite sequences over X.

Stack

A stack is also called a last-in-first-out queue, or lifo queue. A brief informal description of the abstract data type 

stack (more specifically, unbounded stack, in contrast to the versions introduced later) might merely state that the 

following operations are defined on it:

- create Create a new, empty stack.

- empty Return true if the stack is empty.

- push Insert a new element.

- top Return the element most recently inserted, if the stack is not 

empty.

- pop Remove the element most recently inserted, if the stack is not 

empty.

Exhibit 19.1 helps to clarify the meaning of these words.

Exhibit 19.1: Elements are inserted at and removed from the top of the stack.

A definition that uses conventional mathematical notation to capture the intention of the description above 

might define the operations by explicitly showing their effect on the contents of a stack.  Let S = X
∗
 be the set of 
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possible states of a stack, let s = x1 x2 … xk ∈ S be an arbitrary stack state with k elements, and let λ denote the empty 

state of the stack, corresponding to the null string ∈ X*. Let 'cat' denote string concatenation. Define the functions

create: → S
empty: S → {true, false}

push: S × X → S
top: S – {λ} → X

pop: S – {λ} → S

as follows:

     ∀ s ∈  S,∀∀ x, y ∈  X:
create = λ

empty(λ) = true

s ≠ λ ⇒  empty(s) = false

push(s, y) = s cat y = x1 x2 … xk y

s ≠ λ top(s) = xk

s ≠ pop(s) = x1 x2 … xk–1

This definition refers explicitly to the contents of the stack. If we prefer to hide the contents and refer only to 

operations and their results, we are led to another style of formal definition of abstract data types that expresses the  

semantics of the operations by relating them to each other rather than to the explicitly listed contents of a data 

structure. This is the commonly used approach to define abstract data types, and we follow it for the rest of this  

chapter.

Let S be a set and s0 ∈  S a distinguished state. s0 denotes the empty stack, and S is the set of stack states that can 

be obtained from the empty stack by performing finite sequences of  'push' and 'pop' operations. The following 

functions represent stack operations:

create: → S

empty: S → {true, false}

push: S  X → S

top: S – {s0} → X

pop: S – {s0} → S

The semantics of the stack operations is specified by the following 

axioms:

  ∀ s ∈  S, ∀ x ∈  X:
(1) create = s0

(2) empty(s0) = true

(3) empty(push(s, x)) = false

(4) top(push(s, x)) = x

(5) pop(push(s, x)) = s

These axioms can be described in natural language as follows:

(1) 'create' produces a stack in the distinguished state.

(2) The distinguished state is empty.

(3) A stack is not empty after an element has been inserted.

(4) The element most recently inserted is on top of the stack.

(5) 'pop' is the inverse of 'push'.

Notice that 'create' plays a different role from the other stack operations: it is merely a mechanism for causing a 

stack to come into existence, and could have been omitted by postulating the existence of a stack in st ate s0. In any 

implementation, however, there is always some code that corresponds to 'create'. Technical note: we could identify 
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'create' with s0, but we choose to make a distinction between the act of creating a new empty stack and the empty 

state that results from this creation; the latter may recur during normal operation of the stack.

Reduced sequences

Any s ∈  S is obtained from the empty stack s0 by performing a finite sequence of 'push' and 'pop' operations. By 

axiom (5) this sequence can be reduced to a sequence that transforms s0 into  s and consists of 'push' operations 

only.

Example
s = pop(push(pop(push(push(s0, x), y)), z))

= pop(push(push(s0, x), z))

= push(s0, x)

An implementation of a stack may provide the following procedures:

procedure create(var s: stack);

function empty(s: stack): boolean;

procedure push(var s: stack; x: elt);

function top(s: stack): elt;

procedure pop(var s: stack);

Any program that uses this data type is restricted to calling these five procedures for creating and  

operating on stacks; it is not allowed to use information about the underlying implementation. The  

procedures may only be called within the constraints of the specification; for example, 'top' and 

'pop' may be called only if the stack is not empty:

if  not empty(s)  then  pop(s);

The specification above assumes that a stack can grow without a bound; it defines an abstract data type called 

unbounded stack. However, any implementation imposes some bound on the size (depth) of a stack: the size of the 

underlying array in an array imple→d reflect  such→ limitations.  The following  fixed-length stack describes an 

implementation as an array of fixed size m, which limits the maximal stack depth.

Fixed-length stack
create:→ S

empty: S → {true, false}

full: S → {true, false}

push: {s ∈  S: not full(s)} × X → S

top: S – {s0} → X

pop: S – {s0} → S

To specify the behavior of the function 'full' we need an internal function

depth: S → {0, 1, 2, … , m}

that measures the stack depth, that is, the number of elements currently in the stack. The function 'depth' interacts 

with the other functions in the following axioms, which specify the stack semantics:

∀ s ∈  S, ∀ x ∈  X:
create = s0

empty(s) = true

not full(s) ⇒  empty(push(s, x)) = false

depth(s0) = 0
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not empty(s) ⇒  depth(pop(s)) = depth(s) – 1

not full(s) ⇒  depth(push(s, x)) = depth(s) + 1

full(s) = (depth(s) = m)

not full(s) ⇒
top(push(s, x)) = x

pop(push(s, x)) = s

Variable-length stack

A stack implemented as a list may overflow at unpredictable moments depending on the contents of the entire 

memory, not just of the stack. We specify this behavior by postulating a function 'space-available'. It has no domain 

and thus acts as an oracle that chooses its value independently of the state of the stack (if we gave 'space-available' a  

domain, this would have to be the set of states of the entire memory).

create: → S

empty: S → {true, false}

space-available: → {true, false}
push: S × X → S

top: S – {s0} → X

pop: S – {s0} → S

∀ s ∈  S, ∀ x ∈  X:
create = s0

empty(s0) = true

space-available ⇒
empty(push(s, x)) = false

top(push(s, x)) = x

pop(push(s, x)) = s

Implementation

We have seen that abstract data types cannot capture our intuitive, vague concept of a stack in one single model. 

The rigor enforced by the formal definition makes us aware that there are different types of stacks with different  

behavior (quite apart from the issue of the domain type X, which specifies what type of elements are to be stored).  

This  clarity  is  an  advantage  whenever  we  attempt  to  process  abstract  data  types  automatically;  it  may  be  a 

disadvantage for human communication, because a rigorous definition may force us to (over)specify details.

The different types of stacks that we have introduced are directly related to different styles of implementation. 

The fixed-length stack, for example, describes the following implementation:

const  m = … ;  { maximum length of a stack }

type elt = … ;

stack =record

a: array[1 .. m] of elt;

d: 0 .. m;  { current depth of stack }

end;

procedure create(var s: stack);

begin  s.d := 0  end;

function empty(s: stack): boolean;

begin  return(s.d = 0)  end;

function full(s: stack): boolean;

begin  return(s.d = m)  end;

procedure push(var s: stack; x: elt);  { not to be called if the stack 

is full }

begin  s.d := s.d + 1;  s.a[s.d] := x  end;
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function top(s: stack): elt;  { not to be called if the stack is 

empty }

begin  return(s.a[s.d])  end;

procedure pop(var s: stack);  { not to be called if the stack is 

empty }

begin  s.d := s.d – 1  end;

Since the function 'depth' is not exported (i.e. not made available to the user of this data type), it need not be 

provided as a procedure. Instead, we have implemented it as a variable d which also serves as a stack pointer.

Our implementation assumes that the user checks that the stack is not full before calling 'push', and that it is not 

empty before calling 'top' or 'pop'. We could, of course, write the procedures 'push', 'top', and 'pop' so as to "protect  

themselves" against illegal calls on a full or an empty stack simply by returning an error message to the calling  

program. This requires adding a further argument to each of these three procedures and leads to yet other types of 

stacks which are formally different abstract data types from the ones we have discussed.

First-in-first-out queue

The  following  operations  (Exhibit  19.2)  are  defined  for  the  abstract  data  type  fifo  queue (first-in-first-out 

queue):

empty Return true if the queue is empty.

enqueue Insert a new element at the tail end of the queue.

front Return the front element of the queue.

dequeue Remove the front element.

Exhibit 19.2: Elements are inserted at the tail and removed from the head of the fifo queue. 

Let F be the set of queue states that can be obtained from the empty queue by performing finite sequences of  

'enqueue' and 'dequeue' operations. f0 ∈  F denotes the empty queue. The following functions represent fifo queue 

operations:

create: → F

empty: F → {true, false}

enqueue: F × X → F

front: F – {f0} → X

dequeue: F – {f0} → F

The semantics of the fifo queue operations is specified by the 

following axioms:

∀ f ∈  F,∀ x ∈  X:
(1) create = f0

(2) empty(f0) = true

(3) empty(enqueue(f, x)) = false

(4) front(enqueue(f0, x)) = x

(5) not empty(f) ⇒  front(enqueue(f, x)) = front(f)

(6) dequeue(enqueue(f0, x)) = f0

(7) not empty(f) ⇒  dequeue(enqueue(f, x)) = enqueue(dequeue(f), x)
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Any f ∈  F is obtained from the empty fifo queue f0 by performing a finite sequence of 'enqueue' and 'dequeue' 

operations. By axioms (6) and (7) this sequence can be reduced to a sequence consisting of 'enqueue' operations 

only which also transforms f0 into f.

Example
f = dequeue(enqueue(dequeue(enqueue(enqueue(f0, x), y)), z))

= dequeue(enqueue(enqueue(dequeue(enqueue(f0, x)), y), z))

= dequeue(enqueue(enqueue(f0, y), z))

= enqueue(dequeue(enqueue(f0, y)), z)

= enqueue(f0, z)

An implementation of a fifo queue may provide the following procedures:

procedure create(var f: fifoqueue);

function empty(f: fifoqueue): boolean;

procedure enqueue(var f: fifoqueue; x: elt);

function front(f: fifoqueue): elt;

procedure dequeue(var f: fifoqueue);

Priority queue

A priority queue orders the elements according to their value rather than their arrival time. Thus we assume that 

a total order ≤ is defined on the domain X. In the following examples, X is the set of integers; a small integer means  

high priority. The following operations (Exhibit 19.3) are defined for the abstract data type priority queue:

- empty Return true if the queue is empty.

- insert Insert a new element into the queue.

- min Return the element of highest priority contained in the queue.

- delete Remove the element of highest priority from the queue.

Exhibit 19.3: An element's priority determines its position in a priority queue. 

Let  P be the set  of  priority queue  states  that  can be obtained from the empty queue  by performing finite  

sequences of 'insert' and 'delete' operations. The empty priority queue is denoted by p0 ∈  P. The following functions 

represent priority queue operations:

create: → P

empty: P → {true, false}

insert: P × X → P

min: P – {p0} → X

delete: P – {p0} → P

The semantics of the priority queue operations is specified by the following axioms. For x, y ∈ X, the function 

MIN(x, y) returns the smaller of the two values.
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∀ p ∈  P,∀ x ∈  X:
(1) create = p0

(2) empty(p0) = true

(3) empty(insert(p, x)) = false

(4) min(insert(p0, x)) = x

(5) not empty(p) ⇒  min(insert(p, x)) = MIN(x, min(p))

(6) delete(insert(p0, x)) = p0

(7) not empty(p)⇒

delete (insert(p,x))={ pifxminp

insertdeletep,xelse

Any p ∈  P is obtained from the empty queue p0 by a finite sequence of 'insert' and 'delete' operations. By axioms 

(6) and (7) any such sequence can be reduced to a shorter one that also transforms p 0 into p and consists of 'insert' 

operations only.

Example
Assume that x < z, y < z.

p = delete(insert(delete(insert(insert(p0, x), z)), y))

= delete(insert(insert(delete(insert(p0, x)), z), y))

= delete(insert(insert(p0, z), y))

= insert(p0, z)

An implementation of a priority queue may provide the following procedures:

procedure create(var p: priorityqueue);

function empty(p: priorityqueue): boolean;

procedure insert(var p: priorityqueue; x: elt);

function min(p: priorityqueue): elt;

procedure delete(var p: priorityqueue);

Dictionary

Whereas stacks and fifo queues  are designed to retrieve and process elements  depending on their  order of 

arrival, a dictionary (or table) is designed to process elements exclusively by their value (name). A priority queue is  

a hybrid: insertion is done according to value, as in a dictionary, and deletion according to position, as in a fifo  

queue.

The simplest type of dictionary supports the following operations:

- member Return true if a given element is contained in the 

dictionary.

- insert Insert a new element into the dictionary.

- delete Remove a given element from the dictionary.

Let  D be the  set  of  dictionary  states  that  can be  obtained from the empty dictionary  by performing finite  

sequences of  'insert'  and 'delete'  operations. d0 ∈ D denotes  the empty dictionary. Then the operations can be 

represented by functions as follows:

create: → D

insert: D × X → D

member: D × X → {true, false}

delete: D × X → D

The semantics of the dictionary operations is specified by the 

following axioms:
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∀ d ∈  D,∀ x, y ∈  X:
(1) create = d0

(2) member(d0, x) = false

(3) member(insert(d, x), x) = true

(4) x ≠ y ⇒  member(insert(d, y), x) = member(d, x)

(5) delete(d0, x) = d0

(6) delete(insert(d, x), x) = delete(d, x)

(7) x ≠ y ⇒  delete(insert(d, x), y) = insert(delete(d, y), x)

Any d  ∈ D is obtained from the empty dictionary d0 by a finite sequence of 'insert'  and 'delete'  operations. By 

axioms (6) and (7) any such sequence can be reduced to a shorter one that also transforms d0 into d and consists of 

'insert' operations only.

Example
d = delete(insert(insert(insert(d0, x), y), z), y)

= insert(delete(insert(insert(d0, x), y), y), z)

= insert(delete(insert(d0, x), y), z)

= insert(insert(delete(d0, y), x), z)

= insert(insert(d0, x), z)

This  specification  allows  duplicates  to  be  inserted.  However,  axiom  (6)  guarantees  that  all  duplicates  are 

removed if a delete operation is performed. To prevent duplicates, the following axiom is added to the specification 

above:

(8) member(d, x) ⇒  insert(d, x) = d

In this case axiom (6) can be weakened to

(6') not member(d, x) ⇒  delete(insert(d, x), x) = d

An implementation of a dictionary may provide the following procedures:

procedure create(var d: dictionary);

function member(d: dictionary; x: elt): boolean;

procedure insert(var d: dictionary; x: elt);

procedure delete(var d: dictionary; x: elt);

In actual programming practice, a dictionary usually supports the additional operations 'find', 'predecessor', and 

'successor'. 'find' is similar to 'member' but in addition to a true/false answer, provides a pointer to the element  

found. Both 'predecessor' and 'successor' take a pointer to an element e as an argument, and return a pointer to the  

element  in  the  dictionary  that  immediately  precedes  or  follows  e,  according  to  the  order  ≤.  Repeated  call  of  

'successor' thus processes the dictionary in sequential order.

Exercise: extending the abstract data type 'dictionary'

We have defined a dictionary as supporting the three operations 'member', 'insert' and 'delete'. But a dictionary,  

or table, usually supports additional operations based on a total ordering ≤ defined on its domain X. Let us add two 

operations that take an argument x ∈ X and deliver its two neighboring elements in the table:

succ(x)Return the successor of x in the table.

pred(x)Return the predecessor of x in the table.

Algorithms and Data Structures 192  A Global Text

http://creativecommons.org/licenses/by/3.0/


19. Abstract data types

The successor of x is defined as the smallest of all the elements in the table which are larger than x, or as +∞ if  

none exists. The predecessor is defined symmetrically: the largest of all the elements in the table that are smaller  

than x, or –∞. Present a formal specification to describe the behavior of the table.

Solution

Let T be the set of states of the table, and t0 a special state that denotes the empty table. The functions and 

axioms are as follows:

member: T × X → {true,false}

insert: T × X → T

delete: T × X → T

succ: T × X → X ∪  {+∞}
pred: T × X → X ∪  {–∞}

∀ t ∈  T,∀ x, y ∈  X:
 member(t0, x) = false

 member(insert(t, x), x) = true

 x ≠ y ⇒  member(insert(t, y), x) = member(t, x)

 delete(t0, x) = t0

 delete(insert(t, x), x) = delete(t, x)

 x ≠ y ⇒  delete(insert(t, x), y) = insert(delete(t, y), x)

–∞ < x < +∞

pred(t, x) < x < succ(t, x)

succ(t, x) ≠ +∞ ⇒  member(t, succ(t, x)) = true

pred(t, x) ≠ –∞ ⇒  member(t, pred(t, x)) = true

x < y, member(t, y), y ≠ succ(t, x) ⇒  succ(t, x) < y

x > y, member(t, y), y ≠ pred(t, x) ⇒  y < pred(t, x)

Exercise: the abstract data type 'string'

We define the following operations for the abstract data type string:

- empty Return true if the string is empty.

- append Append a new element to the tail of the string.

- head Return the head element of the string.

- tail Remove the head element of the given string.

- length Return the length of the string.

- find Return the index of the first occurrence of a value within the 

string.

Let X = {a, b, … , z}, and S be the set of string states that can be obtained from the empty string by performing a  

finite number of 'append' and 'tail' operations. s0 ∈ S denotes the empty string. The operations can be represented 

by functions as follows:

empty: S → {true, false}

append: S × X → S

head: S – {s0} → X

tail: S – {s0} → S

length: S → {0, 1, 2, … }

find: S × X → {0, 1, 2, … }

Examples:
empty('abc') = false;  append('abc', 'd') = 'abcd';  head('abcd') = 

'a';
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tail('abcd') = 'bcd';  length('abcd') = 4;  find('abcd', 'b') = 2.

(a) Give the axioms that specify the semantics of the abstract data type 'string'.

(b) The function hchop: S × X → S returns the substring of a string s beginning with the first occurrence of a 

given value. Similarly, tchop: S × X → S returns the substring of s beginning with head(s) and ending with 

the  last  occurrence  of  a  given  value.  Specify  the  behavior  of  these  operations  by  additional  axioms. 

Examples:

hchop('abcdabc','c')='cdabc'

tchop('abcdabc', 'b') = 'abcdab'

(c) The function cat: S  × S → S returns the concatenation of two sequences. Specify the behavior of 'cat' by 

additional axioms. Example:

cat('abcd', 'efg') = 'abcdefg'

(d) The function reverse: S → S returns the given sequence in reverse order. Specify the behavior of reverse by 

additional axioms. Example:

reverse('abcd') = 'dcba'

Solution

(a) Axioms for the six 'string' operations:

∀ s ∈  S, ∀ x, y ∈  X:
empty(s0) = true

empty(append(s, x)) = false

head(append(s0, x)) = x

not empty(s) ⇒  head(s) = head(append(s, x))

tail(append(s0, x)) = s0

not empty(s) ⇒  tail(append(s, x)) = append(tail(s), x)

length(s0) = 0

length(append(s, x)) = length(s) + 1

find(s0, x) = 0

x ≠ y, find(s, x) = 0 ⇒  find(append(s, y), x) = 0

find(s, x) = 0 ⇒  find(append(s, x), x) = length(s) + 1

find(s, x) = d > 0 ⇒  find(append(s, y), x) = d

(b) Axioms for 'hchop' and 'tchop':

∀ s ∈  S, ∀ x, y ∈  X:
hchop(s0, x) = s0

not empty(s), head(s) = x ⇒  hchop(s, x) = s

not empty(s), head(s) ≠ x ⇒  hchop(s, x) = hchop(tail(s), x)

tchop(s0, x) = s0

tchop(append(s, x), x) = append(s, x)

x ≠ y ⇒  tchop(append(s, y), x) = tchop(s, x)

(c) Axioms for 'cat':

∀ s, s' ∈  S:
cat(s, s0) = s

not empty(s') ⇒  cat(s, s') = cat(append(s, head(s')), tail(s'))

(d) Axioms for 'reverse':

 ∀ s ∈  S:
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19. Abstract data types

reverse(s0) = s0

s ≠ s0 ⇒  reverse(s) = append(reverse(tail(s)), head(s))

Exercises

1. Implement two stacks iν onε array a[1 ..  m] in  such a  way that neither stack overflows unless the total 

number of elements in both stacks together is m. The operations 'push', 'top', and 'pop' should run in O(1) 

time.

2. A double-ended queue (deque) can grow and shrink at both ends, left  and right,  using the procedures 

'enqueue-left',  'dequeue-left',  'enqueue-right',  and  'dequeue-right'.  Present  a  formal  specification  to 

describe the behavior of the abstract data type deque.

3. Extend the abstract data type priority queue by the operation next(x), which returns the element in the 

priority queue having the next lower priority than x.
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